

H. Reimerdes

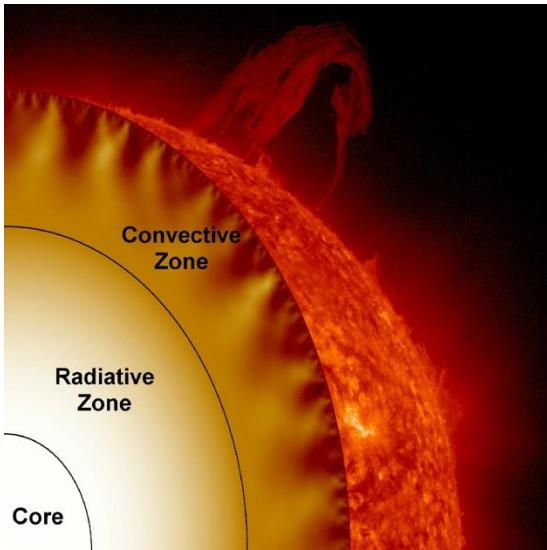
Based on lecture
notes by I. Furno

Plasma II

L11: Magnetic reconnection

May 16, 2025

Content of astrophysics module



- The sun's nuclear energy source
- Transport processes
- The structure of its magnetic field
- The solar dynamo
- Magnetic reconnection
- Solar wind

L9

L10

L11

- See also EPFL MOOC “Plasma physics: Applications” #4c-d
https://learning.edx.org/course/course-v1:EPFLx+PlasmaApplicationX+1T_2018/home
- N. Meyer-Vernet, “Basics of the solar wind”, Cambridge Atmospheric and Space Science Series, Section 3

<http://www.youtube.com/watch?v=GrnGi-q6iWc>

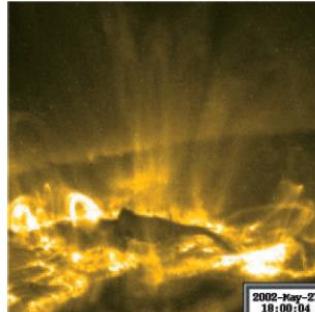
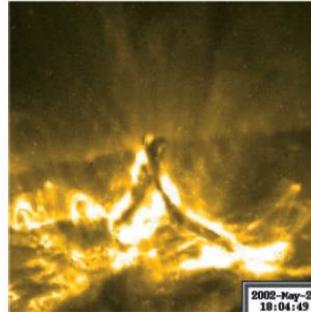
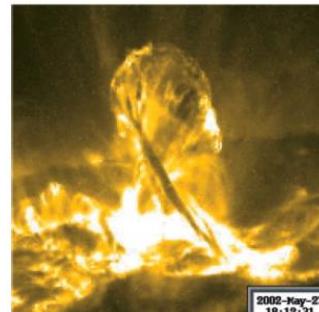
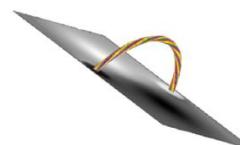
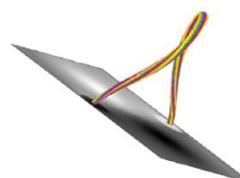
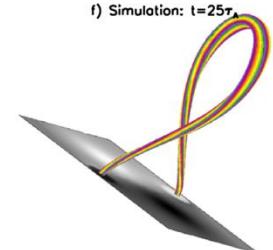
Classification by peak X-ray
(100-800pm) in Watts/m²

A	$< 10^{-7}$
B	$10^{-7} - 10^{-6}$
C	$10^{-6} - 10^{-5}$
M	$10^{-5} - 10^{-4}$
X	$10^{-4} - 10^{-3}$

- A sudden flash of brightness observed over the Sun's 'surface', which is interpreted as a large energy release (up to 6×10^{25} J)
- Often followed by a coronal mass ejection (CME)
- Main features
 - Accumulation of energy for long period and then sudden release
 - Particle acceleration → heating of the corona

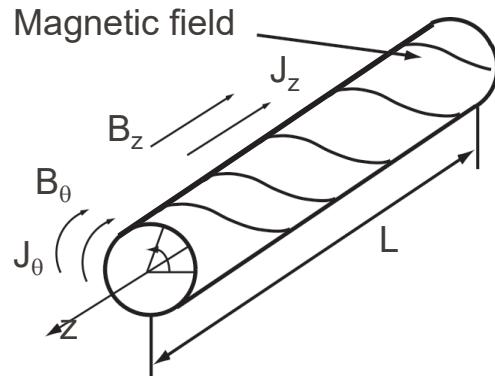
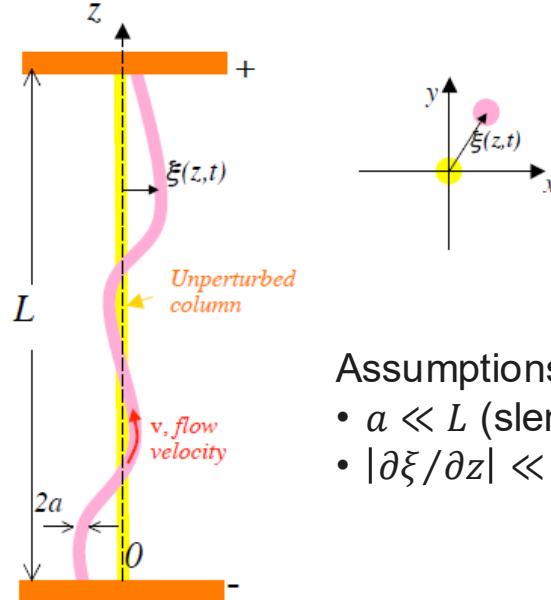
Flares are flux ropes that can be subject to MHD instabilities

- On May 27 2002, TRACE observed an M2 that was not followed by a CME
 - Observations in the extreme ultraviolet ($\sim 20\text{nm}$)
- The flare is accompanied by a filament eruption
→ **kink instability**
(see L10-E2)

d) Simulation: $t=0$ e) Simulation: $t=21\tau_A$ f) Simulation: $t=25\tau_A$ 

Kink instability

- Kruskal-Srafranov current threshold for screw pinches
- Consider a slender column → gain physics insight



Assumptions

- $a \ll L$ (slender screw pinch)
- $|\partial \xi / \partial z| \ll 1$

Kink instability (cont.)

- Use linearised ideal MHD (see L5 & E10-2) neglecting pressure terms and assuming constant $\rho \rightarrow$ equation of motion

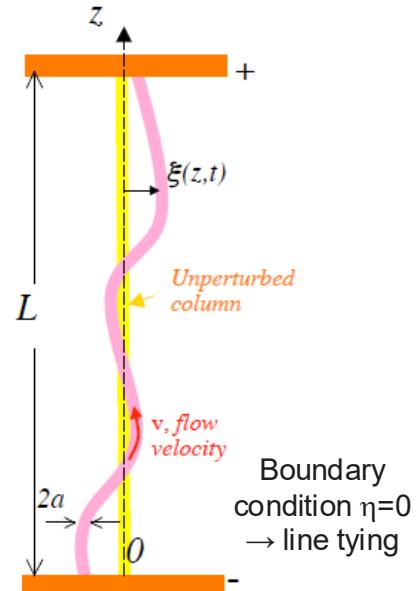
$$\rho \frac{\partial^2 \xi_{x,y}}{\partial t^2} = \frac{B_z^2}{\mu_0} \frac{\partial^2 \xi_{x,y}}{\partial z^2} + \frac{B_z B_\varphi}{\mu_0 a} \frac{\partial \xi_{y,x}}{\partial z}$$

with $\eta = \xi_x + i\xi_y$ and $k_0 = B_\varphi/(aB_z)$

$$\frac{\partial^2 \eta}{\partial t^2} = v_A^2 \left(\frac{\partial^2 \eta}{\partial z^2} + i k_0 \frac{\partial \eta}{\partial z} \right)$$

with $v_A = B_z / \sqrt{\mu_0 \rho}$

- Normal mode approach $\eta \propto e^{-i\omega t}$ yields $-\omega^2 \eta = v_A^2 (\eta'' + i k_0 \eta)$
- Unstable solutions ($\omega^2 < 0$) for $I > I_{K-S} = \frac{4\pi^2 a^2 B_z}{\mu_0 L}$ with growth rate $\text{Im}(\omega) = \frac{\pi v_A}{L} \sqrt{\frac{I^2}{I_{K-S}^2} - 1}$

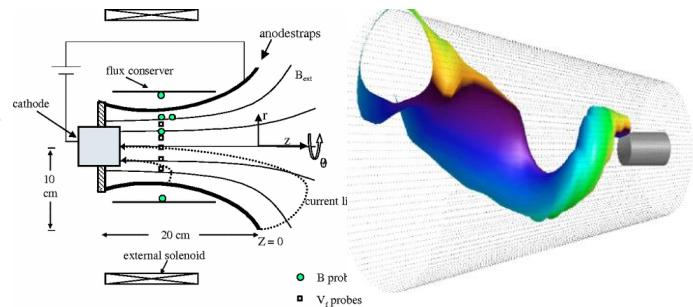


Kruskal-Shafranov conditions

Universality of the kink instability

Plasma thrusters

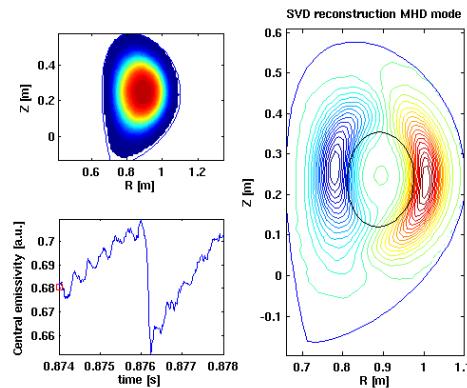
M. Zuin, PRL 2004;
F. Bonomo, PoP 2005



Spheromak formation

S.C. Hsu, PRL 2004

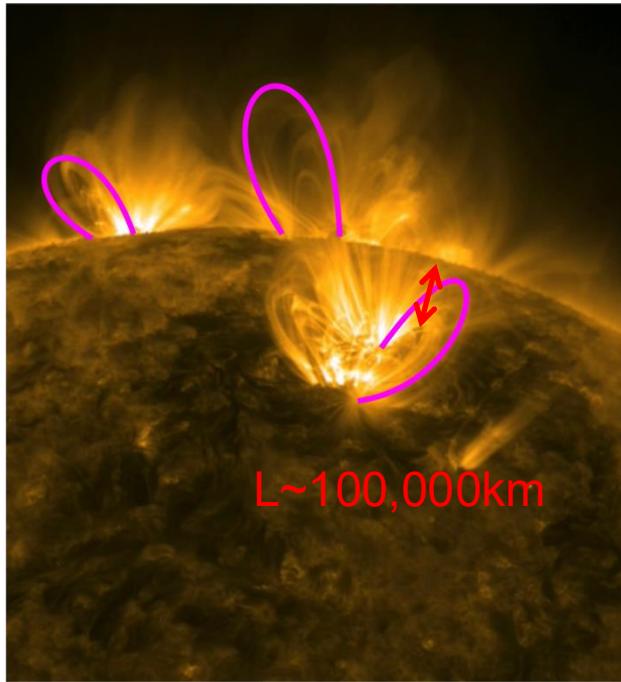
Sawteeth in tokamaks



kinked flux rope

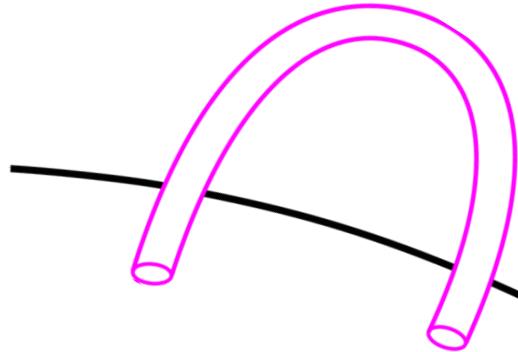
A jet of charged particles shoots out of the galaxy M87

Where is the energy coming from?

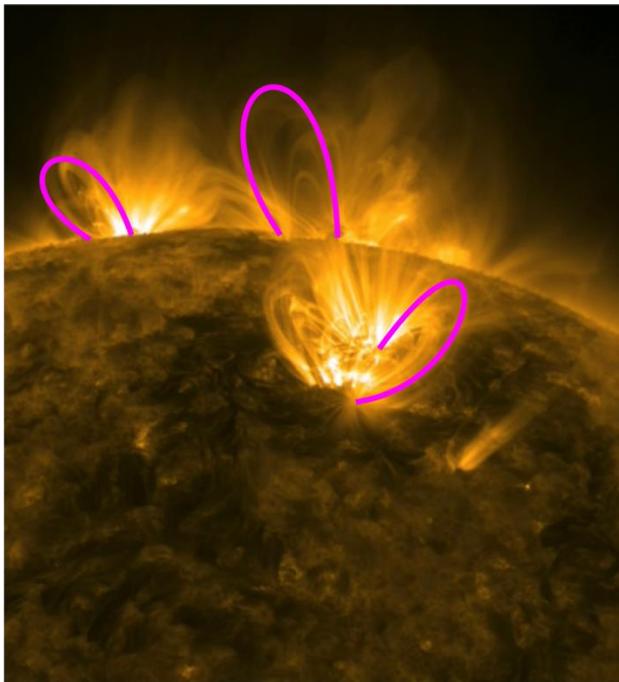


Thermal energy $\sim 10^{22}$ Joules

Coronal mass ejection
 $\sim 10^{24}$ Joules
 $\sim 10^3$ seconds

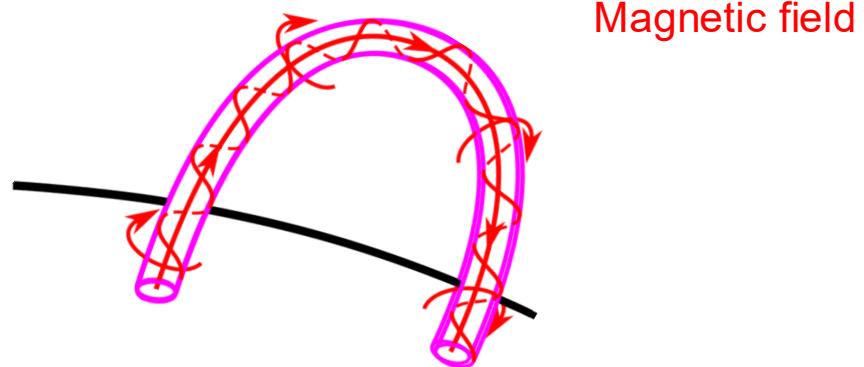


Where is the energy coming from?

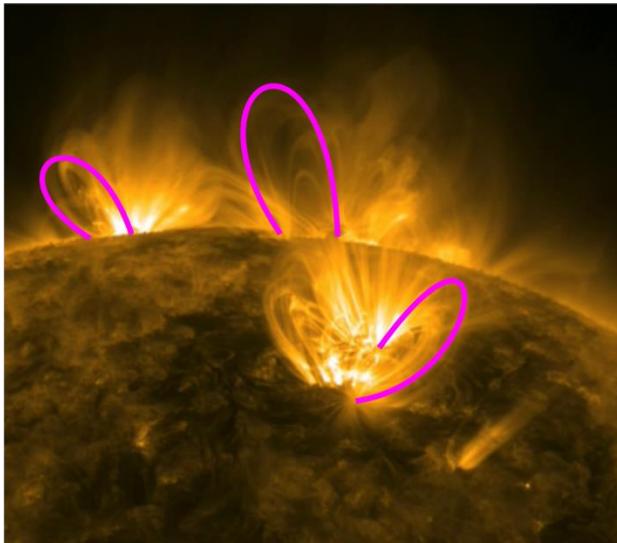


Thermal energy $\sim 10^{22}$ Joules

Coronal mass ejection
 $\sim 10^{24}$ Joules
 $\sim 10^3$ seconds



Where is the energy coming from?

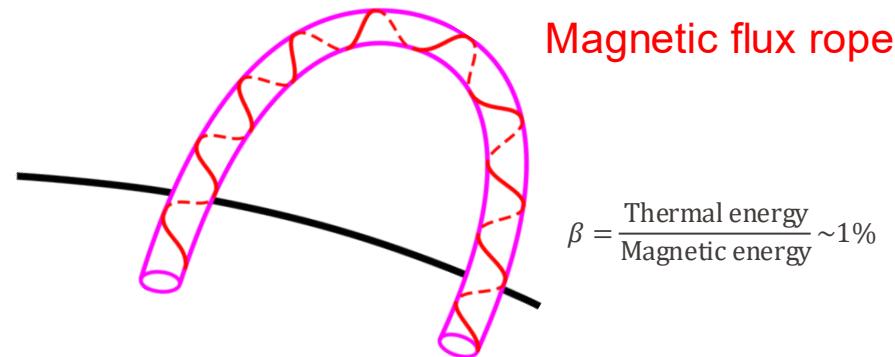


How can magnetic energy be released?

$$\tau_\sigma = \mu_0 \sigma L^2 \sim 10^{14} \text{ s} \gg 10^3 \text{ s}$$

Thermal energy $\sim 10^{22}$ Joules

Coronal mass ejection
 $\sim 10^{24}$ Joules
 $\sim 10^3$ seconds



Magnetic reconnection: the early history

1908: discovery of magnetic fields in sunspots (**G.E. Hale**)

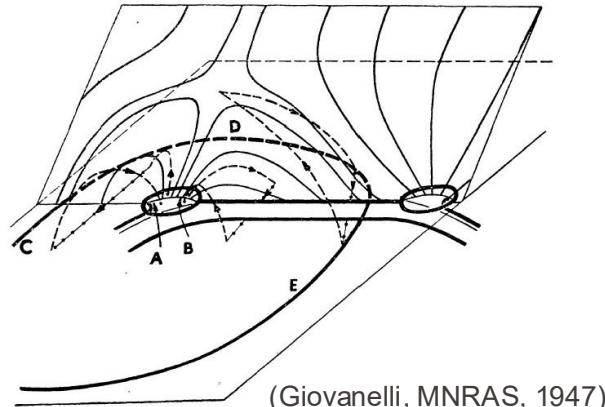
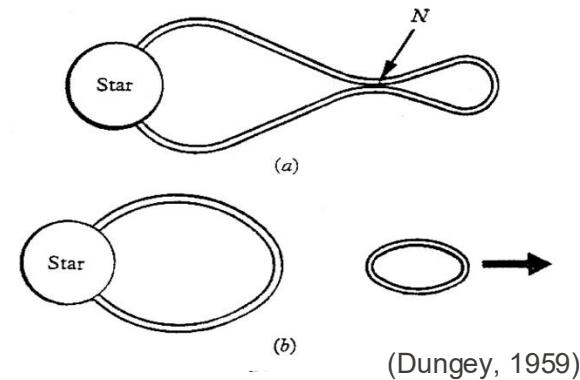
1910's–1940's: MHD not yet developed; Sun described by hydrodynamic

1942–1943: birth of MHD (**H. Alfvén**): frozen-field theorem, Alfvén waves

1947: first electromagnetic theory of flares by **R. Giovanelli**: sunspot's field cancels at a **neutral point**, where electric fields can accelerate particles and drive currents

1950's: non-zero resistivity allows the topology of magnetic field to change near the neutral point

The term **magnetic reconnection** is coined by **J. Dungey**: the neutral point is site of a “discharge” whose effect “is to ‘reconnect’ the line forces”

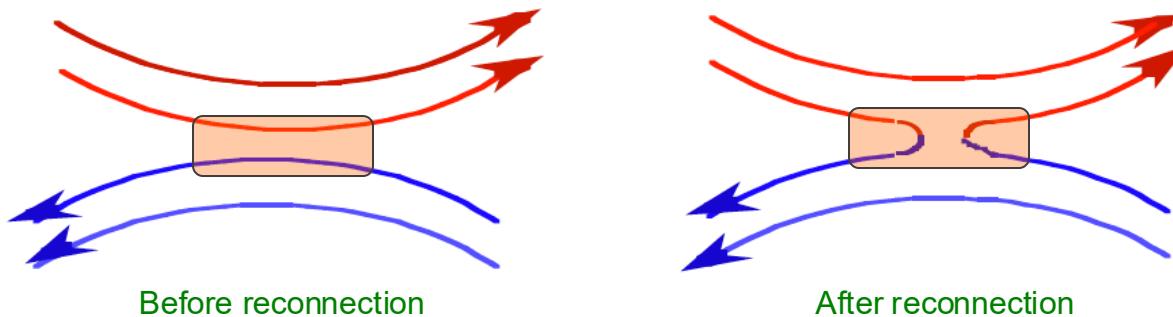


Magnetic reconnection: a definition

- In most of the universe, the magnetic Reynolds number R_m is large and the magnetic field is attached to the plasma (ideal MHD)

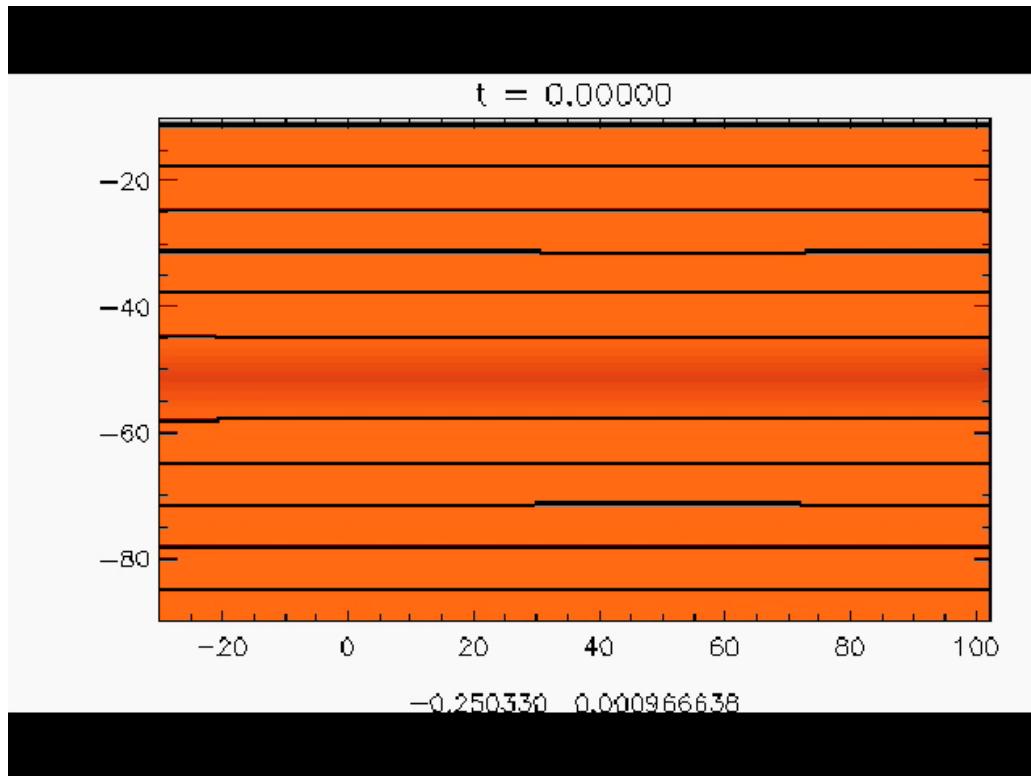
$$\frac{\partial \mathbf{B}}{\partial t} = \frac{1}{\mu_0 \sigma} \nabla^2 \mathbf{B} + \nabla \times (\mathbf{u} \times \mathbf{B})$$

- In very thin regions, where magnetic field gradients are very large, magnetic field can slip through the plasma and reconnect



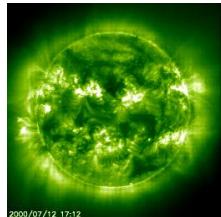
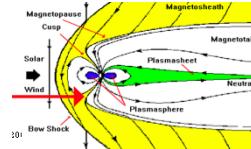
- The global magnetic field topology changes, affecting the path of particles and heat
- Magnetic energy is converted into heat and kinetic energy

Magnetic reconnection: MHD simulation

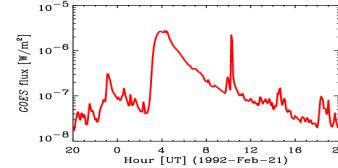
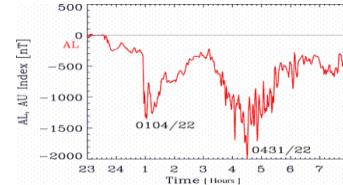
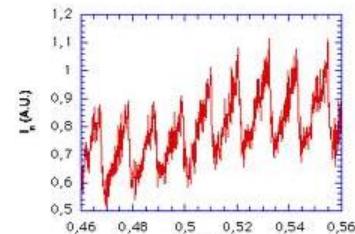


Reconnection occurs very fast after build-up phase

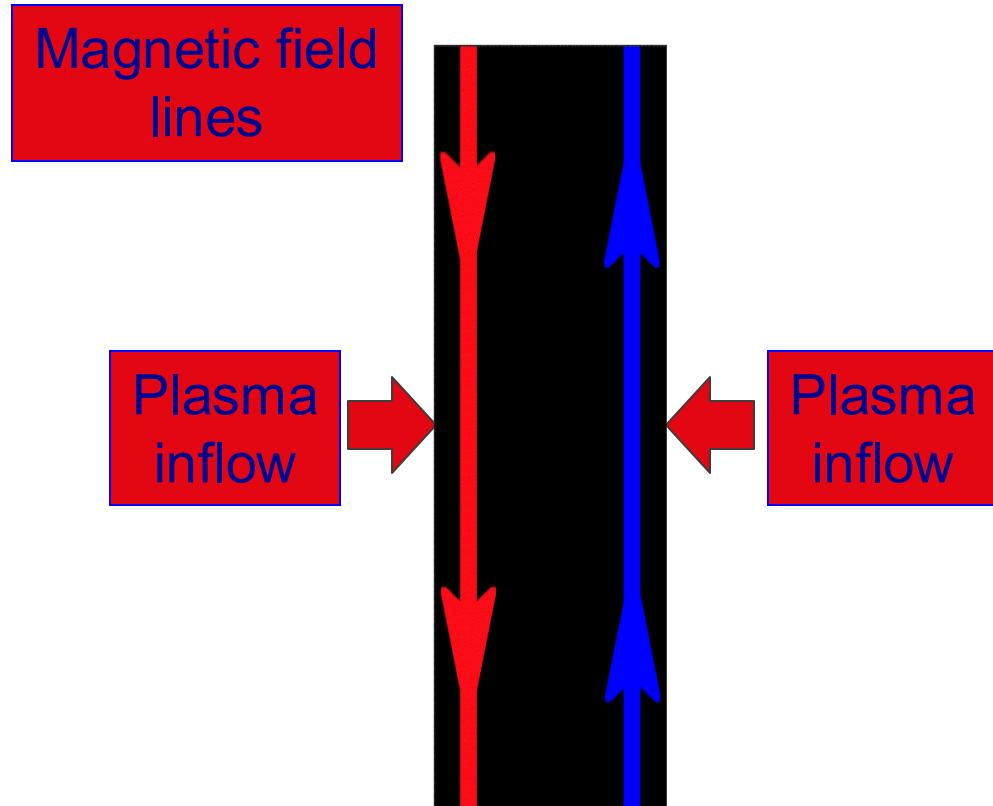
Solar flare

Magnetospheric
Aurora-substorm

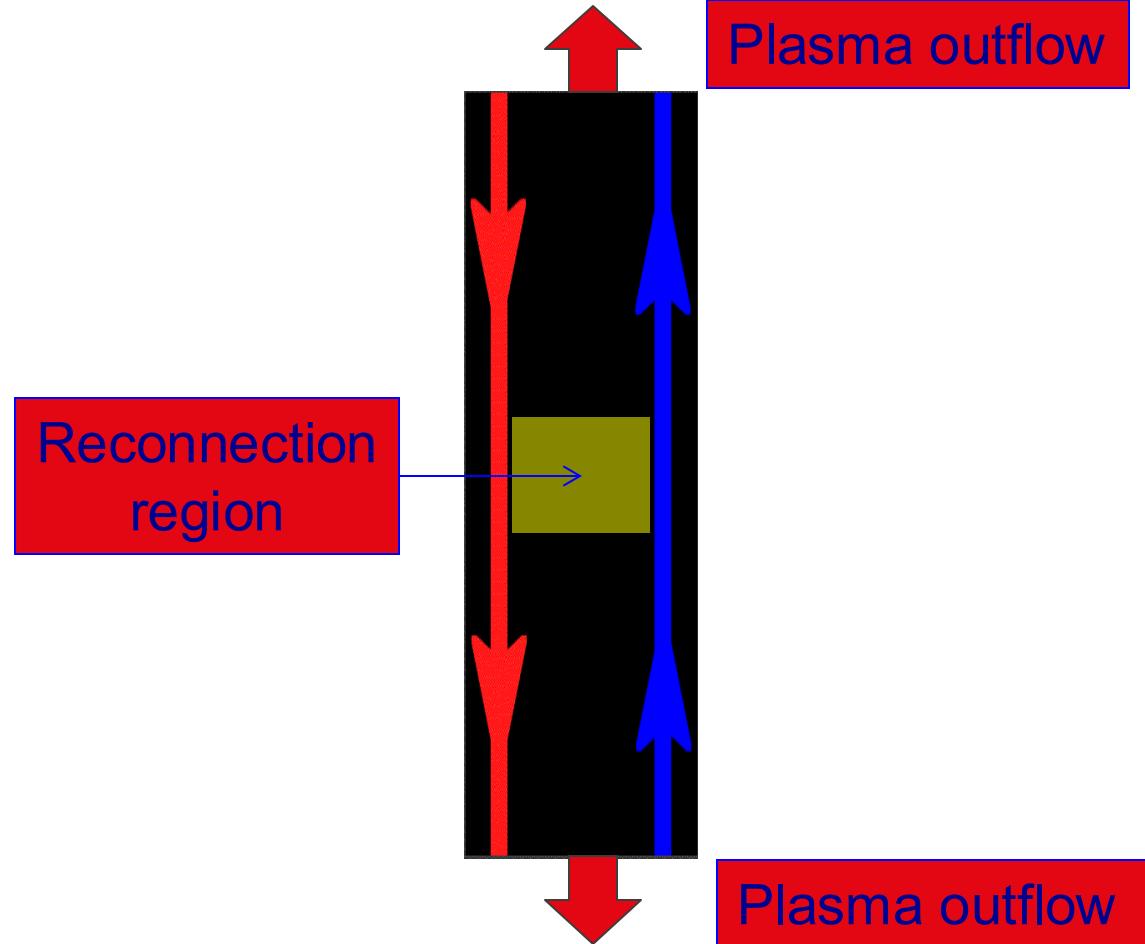
Tokamak Sawtooth

X-ray
intensityMagnetic
Field
strength

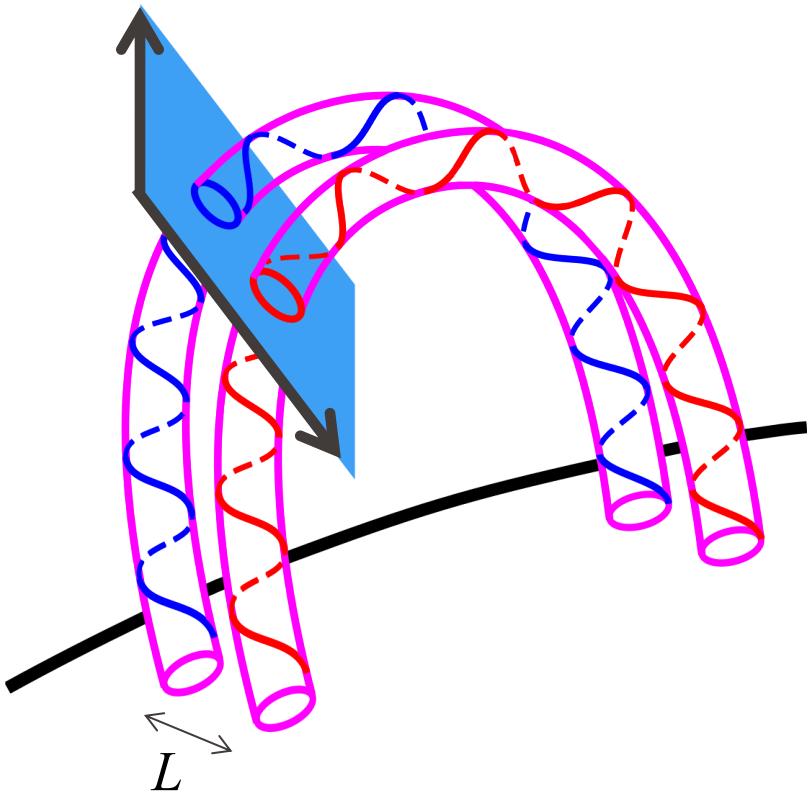
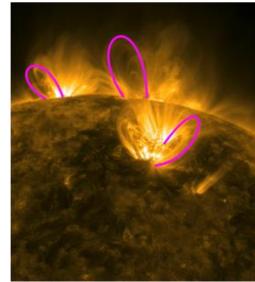
Magnetic reconnection



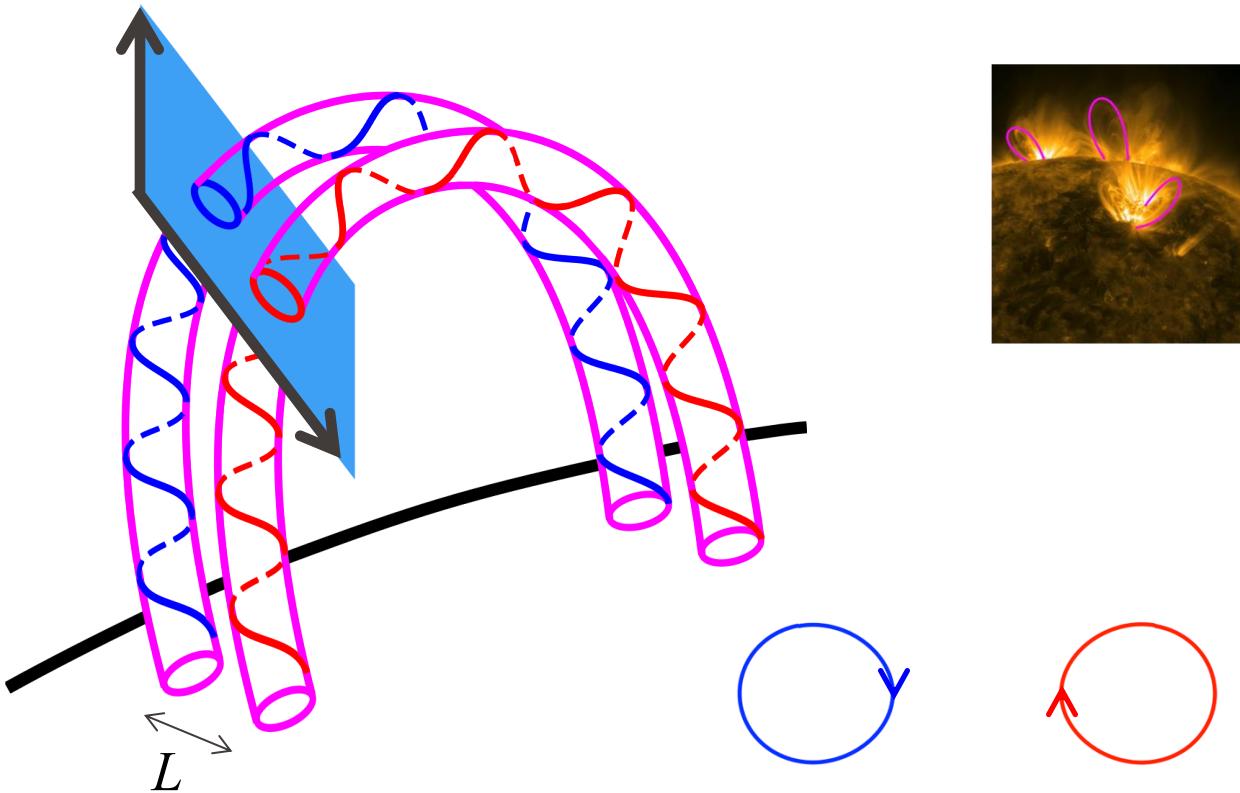
Magnetic reconnection



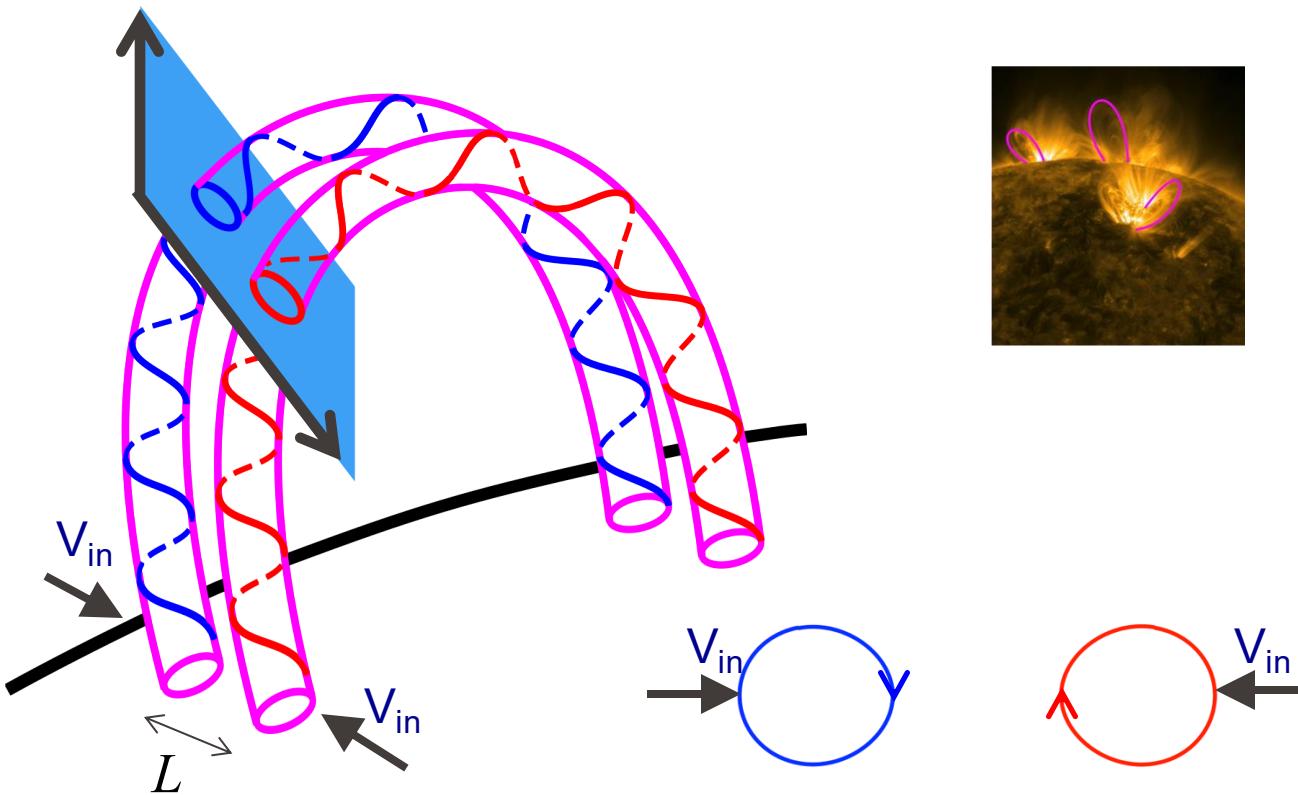
How can reconnection happen between flux ropes?



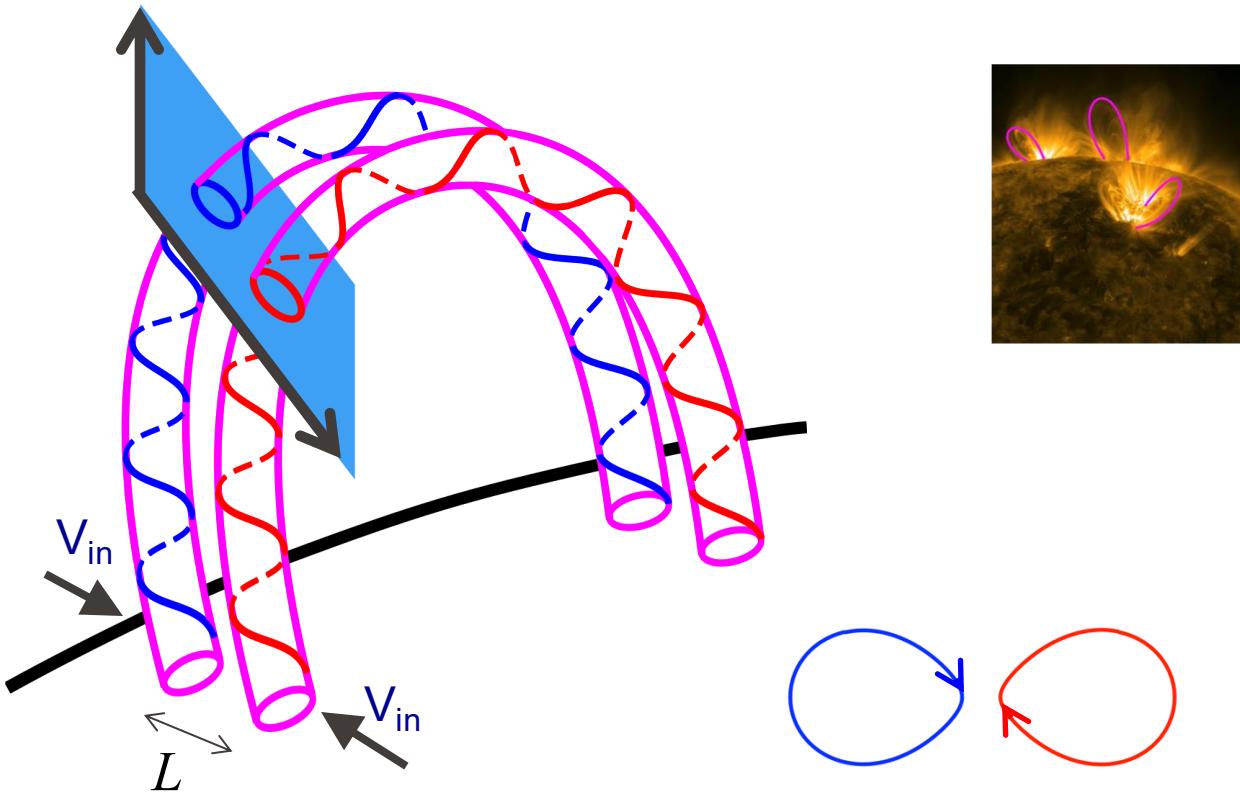
How can reconnection happen between flux ropes?



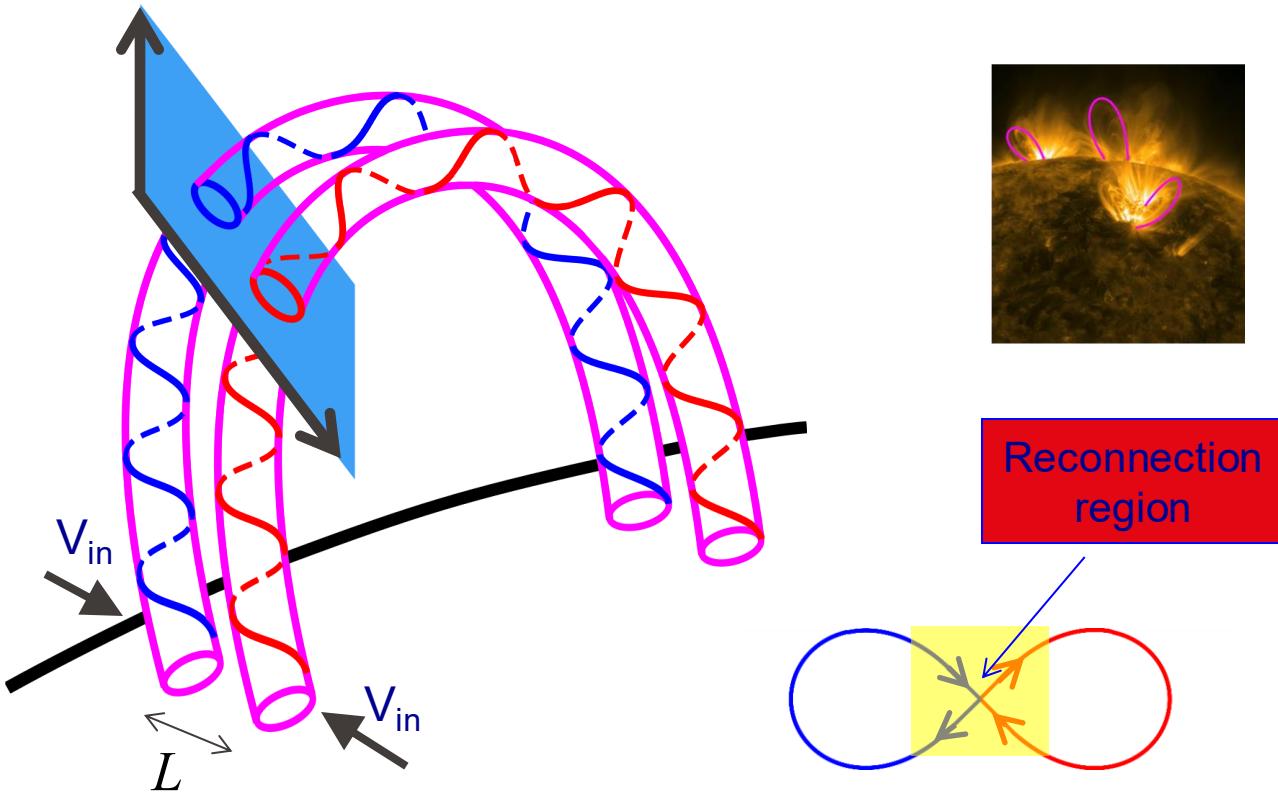
How can reconnection happen between flux ropes?



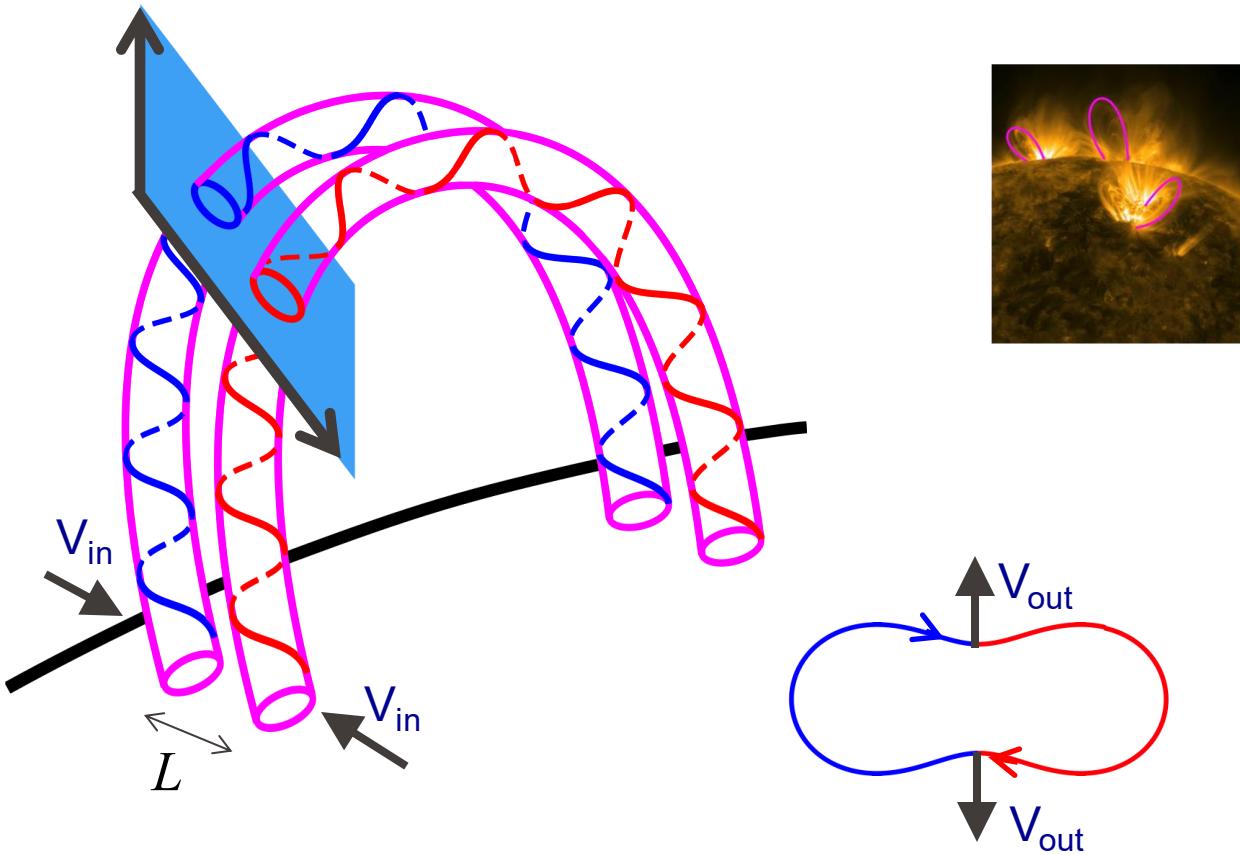
How can reconnection happen between flux ropes?



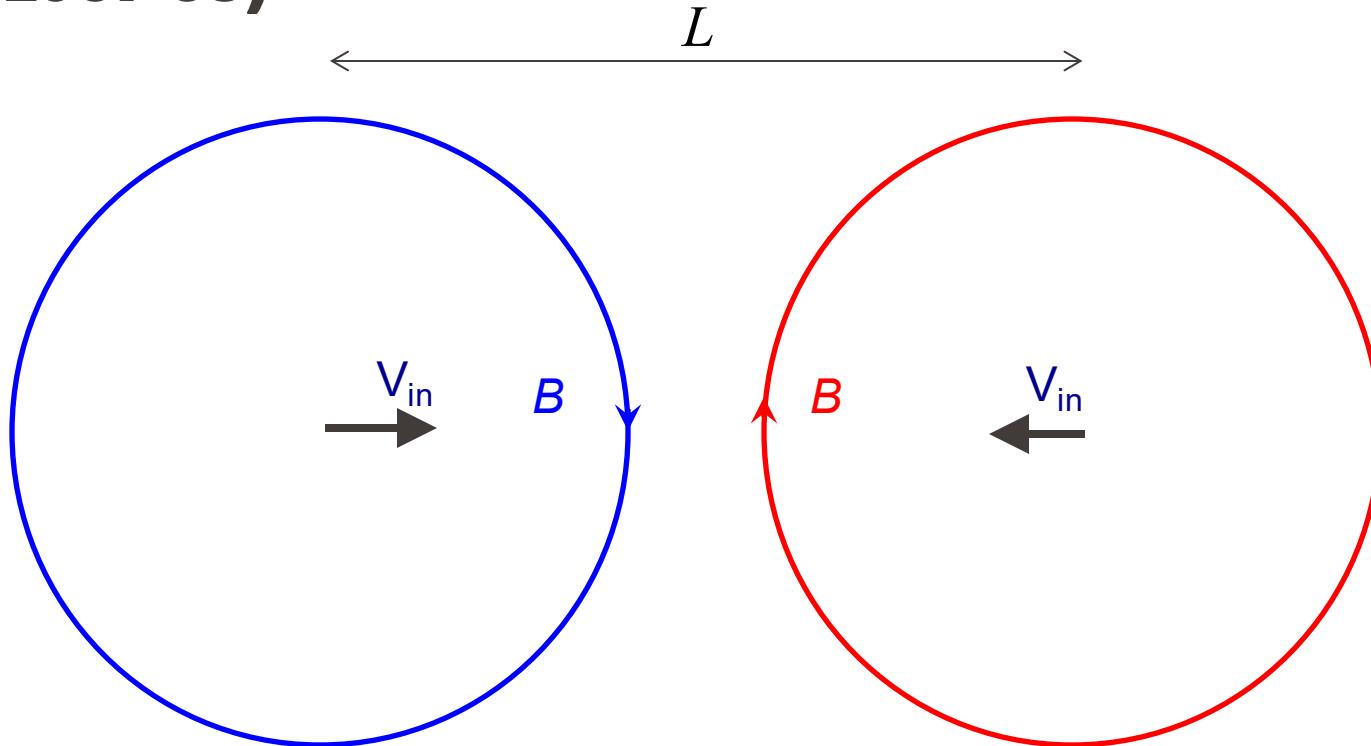
How can reconnection happen between flux ropes?



How can reconnection happen between flux ropes?

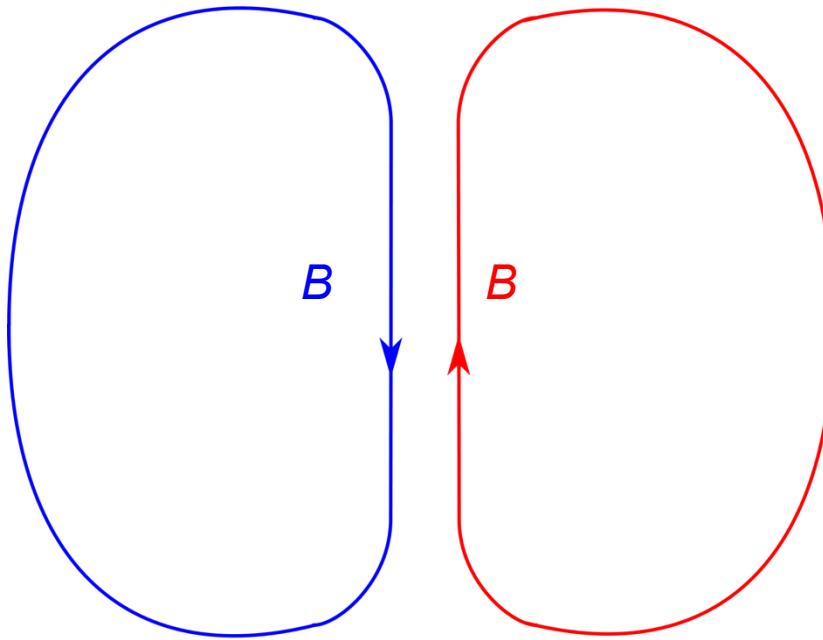


A simple model: Sweet-Parker (1957-58)

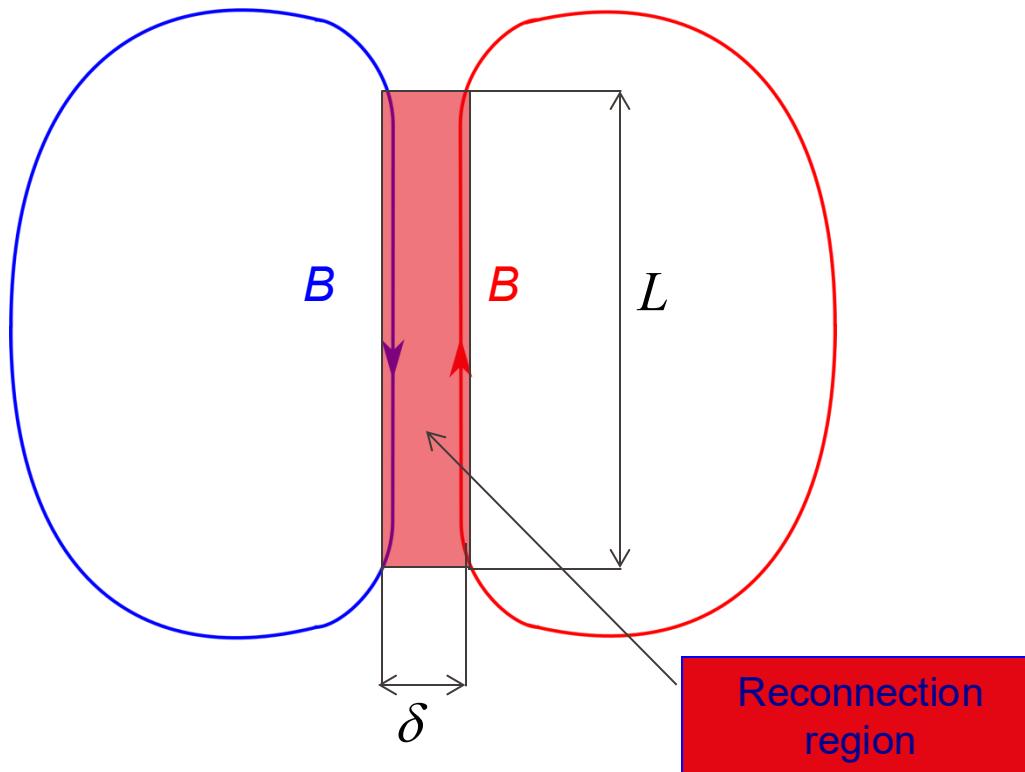


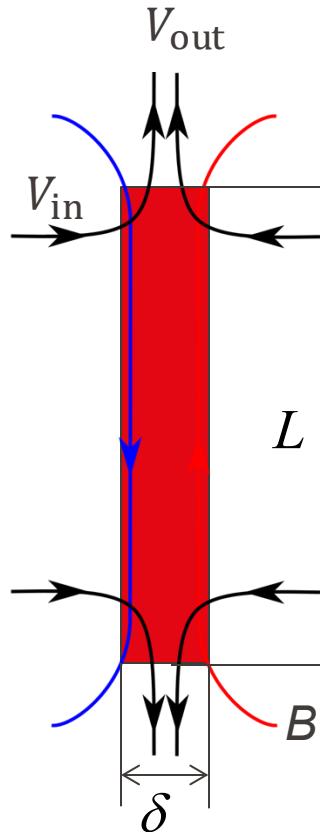
$$\text{Time scale: } \tau_{SP} \sim \frac{L}{V_{in}}$$

A simple model: Sweet-Parker (1957-58)



A simple model: Sweet-Parker (1957-58)

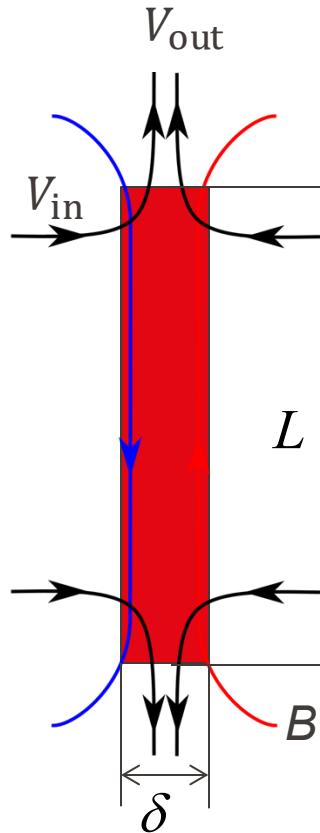




▪ Assumptions

- Steady-state: $\partial_t = 0$
- Slab geometry: $\partial_y = 0$
- Incompressible: $\rho = \text{const.}$
- Low beta: $p \approx 0$
- Large R_m outside the reconnection sheet $\eta = 0$

Sweet-Parker model (cont.)



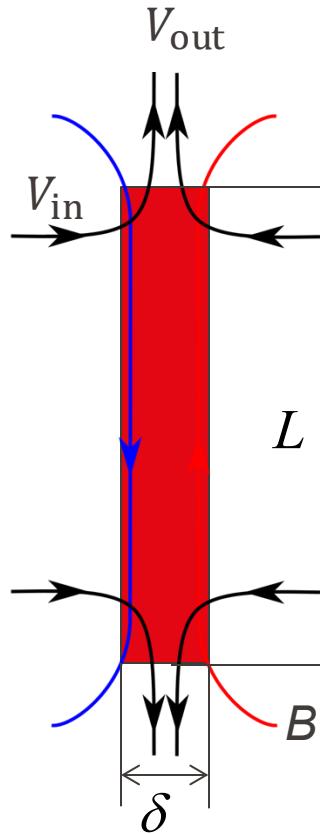
- Continuity equation

$$\nabla \cdot \rho \mathbf{V} = 0$$

- Ohm's law

$$\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \mathbf{j}$$

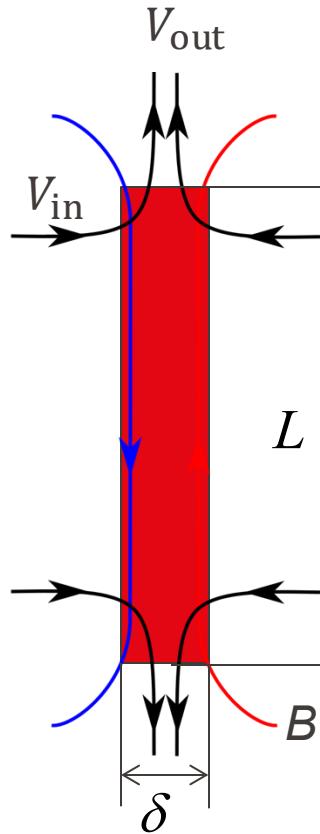
Sweet-Parker model (cont.)



- Ampere's law

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$

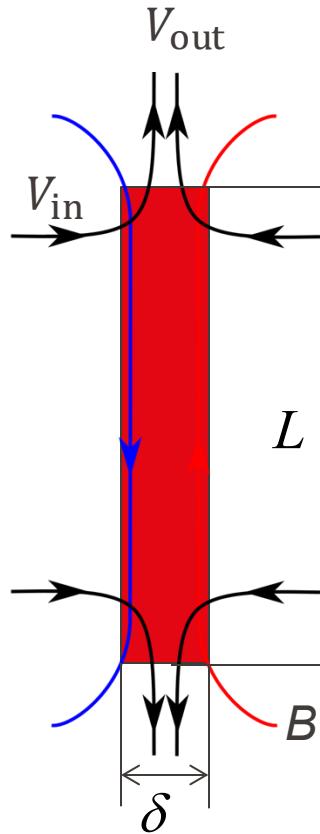
Sweet-Parker model (cont.)



- Equation of motion

$$\rho(\mathbf{V} \cdot \nabla)\mathbf{V} = -\nabla p + \mathbf{j} \times \mathbf{B}$$

Sweet-Parker model (cont.)



- Lundquist number

$$S \equiv \mu_0 \sigma v_A L$$

- The sheet is thin and elongated: $d/L = 1/\sqrt{S}$
- The plasma exits the sheet with Alfvén speed: $V_{\text{out}} = V_A$
- The magnetic field strength at the sheet exit is $B_{\text{out}} = \frac{B_0}{\sqrt{S}}$

Further considerations

- Inflow of electromagnetic energy given by the Poynting flux $\bar{S} = \frac{\bar{E} \times \bar{B}}{\mu_0}$
 - With $E = V_{\text{in}} B_0$

$$\frac{EB_0}{\mu_0} L \Delta y = V_{\text{in}} \frac{B_0^2}{\mu_0} L \Delta y \rightarrow \frac{\text{Inflowing kinetic energy}}{\text{Inflowing magnetic energy}} = \frac{\frac{1}{2} \rho V_{\text{in}}^2 V_{\text{in}} L}{\frac{B_0^2}{\mu_0} V_{\text{in}} L} = \frac{V_{\text{in}}^2}{2 V_A^2}$$

- Most of the inflowing energy is magnetic!

Energy balance in the SP-model (cont.)

- Estimate outflow of magnetic energy:

$$\frac{EB_{\text{out}}}{\mu_0} d \ll \text{inflowing magnetic energy } \frac{EB_{\text{in}}}{\mu_0} L$$

since $B_{\text{out}} \ll B_{\text{in}}$ and $d \ll L$

$$\rightarrow \frac{\text{Outflowing kinetic energy}}{\text{Inflowing magnetic energy}} = \frac{\frac{1}{2} \rho V_{\text{out}}^2 V_{\text{out}} d}{\frac{B_0^2}{\mu_0} V_{\text{in}} L} = \frac{\frac{1}{2} V_{\text{out}}^2}{V_A^2} = \frac{1}{2}$$

- Half of the incoming magnetic energy is converted into kinetic energy!

Where does the other half go?

Energy balance in the SP-model (cont.)

- Estimate outflow of magnetic energy:

$$\frac{EB_{\text{out}}}{\mu_0} d \ll \text{inflowing magnetic energy } \frac{EB_{\text{in}}}{\mu_0} L$$

since $B_{\text{out}} \ll B_{\text{in}}$ and $d \ll L$

$$\rightarrow \frac{\text{Outflowing kinetic energy}}{\text{Inflowing magnetic energy}} = \frac{\frac{1}{2} \rho V_{\text{out}}^2 V_{\text{out}} d}{\frac{B_0^2}{\mu_0} V_{\text{in}} L} = \frac{\frac{1}{2} V_{\text{out}}^2}{V_A^2} = \frac{1}{2}$$

- Half of the incoming magnetic energy is converted into kinetic energy!

Where does the other half go?

- Converted into thermal energy (Joules dissipation) → the reconnection layer is a source of hot and fast plasma with an approximate equipartition between flow and thermal energy

How fast is Sweet-Parker reconnection?

- Typical Sweet-Parker reconnection times

$$\tau_{\text{rec-SP}} \sim \frac{L}{V_{\text{in}}} \approx \frac{L}{V_A} \sqrt{S}$$

	L	B	n	v_A	T	T_{rec-SP}
Solar flare	10 ⁵ km	0.1-1T	2.5x10 ¹⁵ m ⁻³	10 ⁶ m/s	10 ⁷ K	10 ⁷ s
Tokamak	1m	0.1T	10 ¹⁹ m ⁻³	10 ⁶ m/s	1KeV	1-10ms

- Typical flares happen on time scales of 100s → Sweet-Parker reconnection is still too slow
- Typical sawteeth happen on time scales of 10-50μs → Sweet-Parker reconnection is still too slow

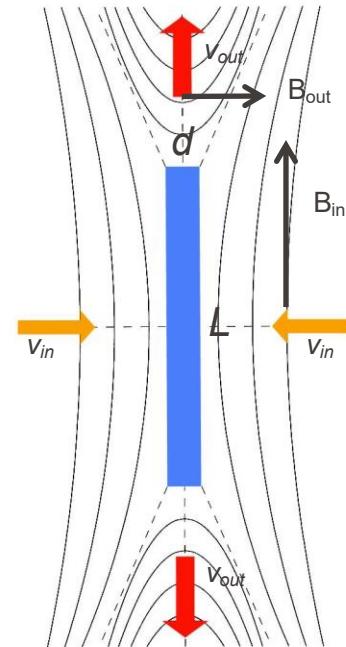
Brief summary: Sweet & Parker model

- First reconnection model: a diffusion region with $d \ll L$, steady state, 2D, Spitzer resistivity
- Resulting reconnection times still too slow to explain observations (sun & tokamak alike)

$$\tau_{\text{rec-SP}} = \frac{L}{V_A} \sqrt{\frac{\mu_0 V_A L}{\eta}}$$

Modify the sheet geometry Increase the resistivity

Introduce new physics: beyond single-fluid MHD, 3D physics

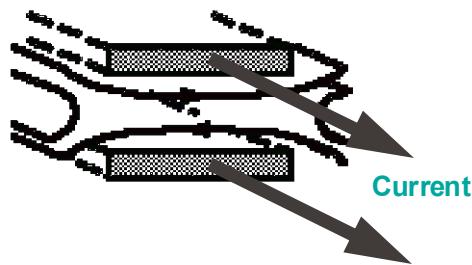


Open questions in magnetic reconnection

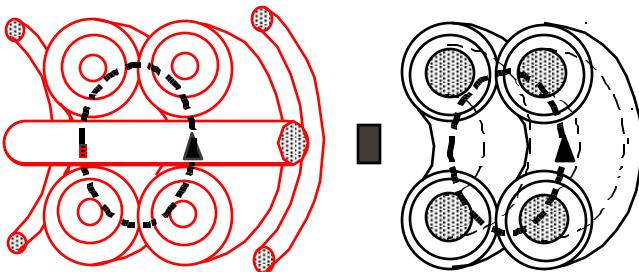
- What causes fast magnetic reconnection?
- What is the interplay between small-scale physics and global dynamics?
- What can astrophysicists learn about reconnection from laboratory experiments and near-Earth space plasmas?

Laboratory experiments to investigate magnetic reconnection

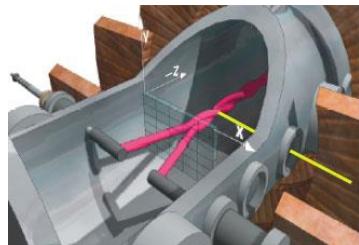
Stenzel and Gekelman – USA, Frank- Russia,
Grulke and Klinger - Europe



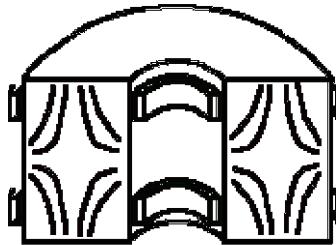
Yamada and Ji – USA, Brown – USA, Ono - Japan



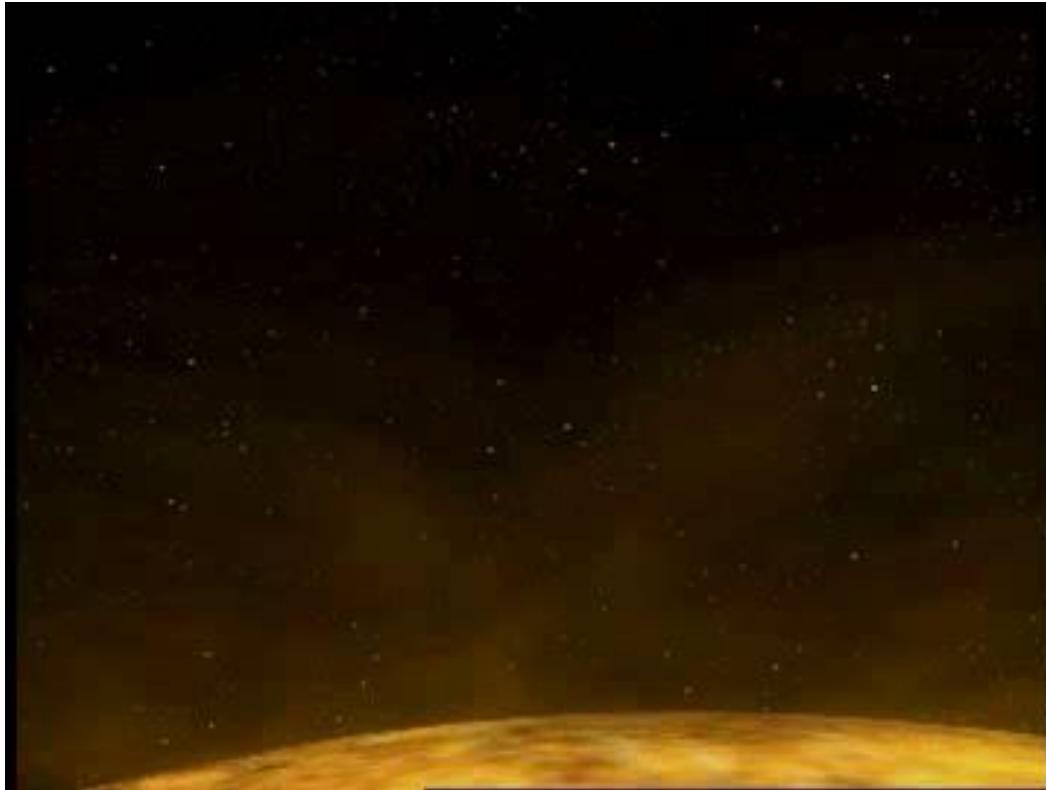
Furno and Intrator – USA, Gekelman - USA



Fasoli and Egedal – USA



Magnetic storms



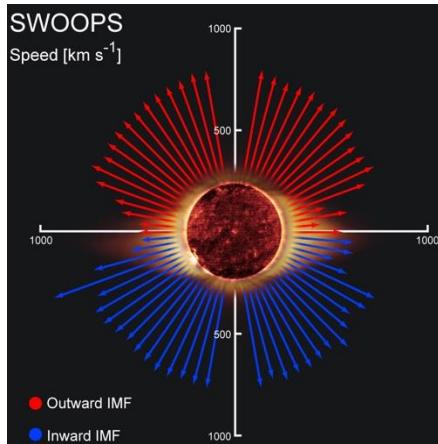
First hints of solar wind

- Birkeland (1908) suggested continuous particle emission from sunspots to explain correlation between sunspots and auroras
- Chapman and Ferraro (1931) suggested that particles are emitted during flares with space otherwise being empty
- Bierman (1951) recognised that cometary tails point directly away from the Sun regardless of the comet's velocity and direction → ionised gas pushed away by the solar wind

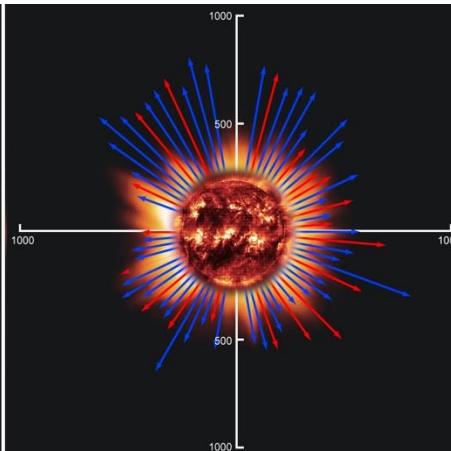
Spacecrafts directly measure the solar wind

- Mariner 2 (launched 1962) – first successful mission for planetary exploration yielded 3 months of solar wind data while traveling to Venus → solar wind speed \sim 300-700km/s
- Ulysses (launched 1990) - performed three sets of polar passes
 - Swoops (Solar Wind Observations Over the Poles of the Sun)

Solar minimum



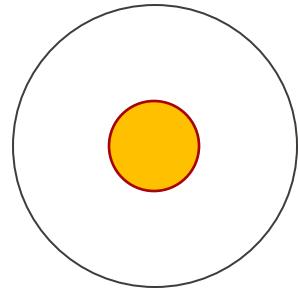
Solar maximum



Assumptions: spherical symmetry, stationary, Lorentz force negligible, isothermal

- Continuity equation

$$\nabla \cdot \rho \mathbf{V} = 0$$



- Equation of motion

$$\rho(\mathbf{V} \cdot \nabla) \mathbf{V} = -\nabla p + \mathbf{j} \times \mathbf{B} - G \frac{\rho M_r}{r^2}$$

- Ideal gas law

$$p = \rho \frac{k_B T}{\mu}$$

- Differential equation for the velocity

$$\frac{1}{V} \frac{\partial V}{\partial r} \left(\frac{V^2}{V_s^2} - 1 \right) = \frac{2}{r} \left(1 - \frac{GM_{\odot}}{2V_s^2 r} \right)$$

Some typical values of the solar wind

- Critical radius

$$r_c = \frac{GM_{\odot}}{2V_s^2}$$

- (Isothermal-) Sound speed

$$V_s = \sqrt{\frac{k_B T}{\mu}}$$

- Integrate equation of motion along flow (assuming isothermal plasma)

$$\frac{V^2}{2} + V_s^2 \log \rho + \phi_G = \text{const.}$$

- Use conservation of mass $\rho V r^2 = \rho_0 V_0 r_0^2$
- Velocity at radius r

$$\begin{aligned} \frac{V^2 - V_0^2}{2} &= -V_s^2 \log \left(\frac{V_0 r_0^2}{V r^2} \right) + \phi_{G0} - \phi_G \\ \Rightarrow \quad \frac{V}{V_0} e^{-\frac{V^2}{2V_s^2}} &= \frac{r_0^2}{r^2} e^{\left[a \left(1 - \frac{r_0}{r} \right) - \frac{V_0^2}{2V_s^2} \right]} \end{aligned}$$

The solar wind velocity (cont.)

- Super-sonic wind: For $V(r_c) = V_s$ (using $r_c = a \frac{r_0}{2}$)

$$\frac{V_0}{V_s} e^{-\frac{V_0^2}{2V_s^2}} = \frac{a^2}{4} e^{-a+\frac{3}{2}}$$

- With $r_c \approx 4.5R_\odot \rightarrow a \approx 9$

$$\frac{V_0}{V_s} \ll 1 \quad \Rightarrow \quad \frac{V_0}{V_s} \approx \frac{a^2}{4} e^{-a+\frac{3}{2}}$$

- One can equally estimate

$$V \approx 2V_s \log\left(\frac{r}{r_c}\right)^{\frac{1}{2}} \quad \text{for} \quad r \rightarrow \infty$$

- Initial velocity of super-sonic wind

$$V_0 \approx V_s \frac{a^2}{4} e^{-a+\frac{3}{2}}$$

$$V_0 \approx 0.011 V_s$$

- Mass-loss rate

$$\frac{dM}{dt} \approx 4\pi \rho_0 V_0 R_\odot^2 \approx 1.5 \times 10^9 \text{ kg s}^{-1}$$

- Solar wind at earth ($r = 1\text{AU} \approx 214R_\odot \approx 48r_c$)

$$V \approx 2V_s \log\left(\frac{r}{r_c}\right)^{\frac{1}{2}} \approx 4V_s \approx 5.6 \times 10^5 \text{ m/s}$$